• Clinical data 90%
  • Efficacy 80%
  • Security 70%
  • Toxicity 30%

Curcuma longa
Rhizoma Curcumae Longae


Curcuma domestica Valeton., C. rotunda L., C. xanthorrhiza Naves, Amomum curcuma Jacq.

General appearance

The primary rhizome is ovate, oblong or pear-shaped round turmeric, while the secondary rhizome is often short branched long turmeric; the round form is about half as broad as long; the long form is from 2–5cm long and 11.8cm thick; externally yellowish to yellowish brown, with root scars and annulations, the latter from the scars of leaf bases; fracture horny; internally orangeyellow to orange; waxy, showing a cortex separated from a central cylinder by a distinct endodermis.

Major chemical constituents

Pale yellow to orange-yellow volatile oil (6%) composed of a number of monoterpenes and sesquiterpenes, including zingiberene, curcumene, α- and - turmerone among others. The colouring principles (5%) are curcuminoids, 50– 60% of which are a mixture of curcumin, monodesmethoxycurcumin and bisdesmethoxycurcumin.

Medicinal uses of Curcuma longa

Uses supported by clinical data
The principal use of Rhizoma Curcumae Longae is for the treatment of acid, flatulent, or atonic dyspepsia.
Uses described in pharmacopoeias and in traditional systems of medicine
Treatment of peptic ulcers, and pain and inflammation due to rheumatoid arthritis and of amenorrhoea, dysmenorrhoea, diarrhoea, epilepsy, pain, and skin diseases.
Uses described in folk medicine, not supported by experimental or clinical data
The treatment of asthma, boils, bruises, coughs, dizziness, epilepsy, haemorrhages, insect bites, jaundice, ringworm, urinary calculi, and slow lactation.


Experimental pharmacology

Anti-inflammatory activity

The anti-inflammatory activity of Rhizoma Curcumae Longae has been demonstrated in animal models. Intraperitoneal administration of the drug in rats effectively reduced both acute and chronic inflammation in carrageenininduced paw oedema, the granuloma pouch test, and the cotton pellet granuloma test. The effectiveness of the drug in rats was reported to be similar to that of hydrocortisone acetate or indometacin in experimentally induced inflammation. Oral administration of turmeric juice or powder did not produce an anti inflammatory effect; only intraperitoneal injection was effective. The volatile oil has exhibited anti-inflammatory activity in rats against adjuvant-induced arthritis, carrageenin-induced paw oedema, and hyaluronidase-induced inflammation. The anti-inflammatory activity appears to be mediated through the inhibition of the enzymes trypsin and hyaluronidase. Curcumin and its derivatives are the active anti-inflammatory constituents of the drug.  After intraperitoneal administration, curcumin and sodium curcuminate exhibited strong anti-inflammatory activity in the carrageenin-induced oedema test in rats and mice. Curcumin was also found to be effective after oral administration in the acute carrageenin-induced oedema test in mice and rats. The anti-inflammatory activity of curcumin may be due to its ability to scavenge oxygen radicals, which have been implicated in the inflammation process. Furthermore, intraperitoneal injection of a polysaccharide fraction, isolated from the drug, increased phagocytosis capacity in mice in the clearance of colloidal carbon test.Activity against peptic ulcer and dyspepsia Oral administration to rabbits of water or methanol extracts of the drug significantly decreased gastric secretion and increased the mucin contents of gastric juice Intragastric administration of an ethanol extract of the drug to rats effectively inhibited gastric secretion and protected the gastroduodenal mucosa against injuries caused by pyloric ligation, hypothermic-restraint stress, indometacin, reserpine, and mercaptamine administration, and cytodestructive agents such as 80% methanol, 0.6mol/l hydrochloric acid, 0.2mol/l sodium hydroxide and 25% sodium chloride. The drug stimulated the production of gastric wall mucus, and it restored non-protein sulfides in rats.
Curcumin, one of the anti-inflammatory constituents of the drug, has been shown to prevent and ameliorate experimentally induced gastric lesions in animal models by stimulation of mucin production. However, there are conflicting reports regarding the protective action of curcumin against histamine-induced gastric ulceration in guinea-pigs. Moreover, both intraperitoneal and oral administration of curcumin (100 mg/kg) have been reported to induce gastric ulceration in rats. Non-specific inhibition of smooth muscle contractions in isolated guinea-pig ileum by sodium curcuminate has been reported.
The effect of curcumin on intestinal gas formation has been demonstrated in vitro and in vivo. Addition of curcumin to Clostridium perfringens of intestinal origin in vitro and to a chickpea flour diet fed to rats led to a gradual reduction in gas formation. Both the essential oil and sodium curcuminate increase bile secretion after intravenous administration to dogs. In addition, gall-bladder muscles were stimulated.

Clinical pharmacology

Oral administration of the drug to 116 patients with acid dyspepsia, flatulent dyspepsia, or atonic dyspepsia in a randomized, double-blind study resulted in a statistically significant response in the patients receiving the drug. The patients received 500 mg of the powdered drug four times daily for 7 days. Two other clinical trials which measured the effect of the drug on peptic ulcers showed that oral administration of the drug promoted ulcer healing and decreased the abdominal pain involved.
Two clinical studies have shown that curcumin is an effective antiinflammatory drug. A short-term (2 weeks) double blind, crossover study of 18 patients with rheumatoid arthritis showed that patients receiving either curcumin (1200 mg/day) or phenylbutazone (30 mg/day) had significant improvement in morning stiffness, walking time and joint swelling. In the second study, the effectiveness of curcumin and phenylbutazone on postoperative inflammation was investigated in a double-blind study. Both drugs produced a better anti-inflammatory response than a placebo, but the degree of inflammation in the patients varied greatly and was not evenly distributed among the three groups.


Obstruction of the biliary tract. In cases of gallstones, use only after consultation with a physician. Hypersensitivity to the drug.


No information available.


Carcinogenesis, mutagenesis, impairment of fertility Rhizoma Curcumae Longae is not mutagenic in vitro.

News and Journals

1. Standard of ASEAN herbal medicine, Vol. 1. Jakarta, ASEAN Countries, 1993.
2. Pharmacopoeia of the People’s Republic of China (English ed.). Guangzhou, Guangdong
Science and Technology Press, 1992.
3. Chang HM, But PPH, eds. Pharmacology and applications of Chinese materia medica, Vol.
1. Singapore, World Scientific Publishing, 1986.
4. Keys JD. Chinese herbs, their botany, chemistry and pharmacodynamics. Rutland, VT, CE
Tuttle, 1976.
5. Wren RC. Potter’s new cyclopedia of botanical drugs and preparations. Saffron Walden,
C.W. Daniel, 1988.
6. Bisset NG. Max Wichtl’s herbal drugs & phytopharmaceuticals. Boca Raton, FL, CRC
Press, 1994.
7. Ghazanfar SA. Handbook of Arabian medicinal plants. Boca Raton, FL, CRC Press,
8. Kapoor LD. Handbook of Ayurvedic medicinal plants. Boca Raton, FL, CRC Press, 1990.
9. The Indian pharmaceutical codex, Vol. I. Indigenous drugs. New Delhi, Council of Scientific
& Industrial Research, 1953.
10. Cambie RC, Ash J. Fijian medicinal plants. CSIRO, Australia, 1994.
11. Iwu MM. Handbook of African medicinal plants. Boca Raton, FL, CRC Press, 1993.
12. Hsu HY. Oriental materia medica, a concise guide. Long Beach, CA, Oriental Healing
Arts Institute, 1986.
13. Youngken HW. Textbook of pharmacognosy, 6th ed. Philadelphia, Blakiston, 1950.
14. Medicinal plants in Viet Nam. Manila, World Health Organization, 1990 (WHO
Regional Publications, Western Pacific Series, No. 3).
15. Japanese standards for herbal medicines. Tokyo, Yakuji Nippon, 1993.
16. Medicinal plants in China. Manila, World Health Organization, 1989 (WHO Regional
Publications, Western Pacific Series, No. 2).
17. Quality control methods for medicinal plant materials. Geneva, World Health Organization,
18. Deutsches Arzneibuch 1996. Vol. 2. Methoden der Biologie. Stuttgart, Deutscher
Apotheker Verlag, 1996.
19. European pharmacopoeia, 3rd ed. Strasbourg, Council of Europe, 1997.
20. Guidelines for predicting dietary intake of pesticide residues, 2nd rev. ed. Geneva,
World Health Organization, 1997 (unpublished document WHO/FSF/FOS/97.7;
available from Food Safety, WHO, 1211 Geneva 27, Switzerland).
21. Taylor SJ, McDowell IJ. Determination of curcuminoid pigments in turmeric (Curcuma
domestica Val) by reversed-phase high-performance liquid chromatography.
Chromatographia, 1992, 34:73–77.
22. International Organization for Standardization. Turmeric—Determination of
colouring power—Spectrophotometric method. ISO 5566, 1982.
23. König WA et al. Enantiomeric composition of the chiral constituents of essential oils.
Part 2: Sesquiterpene hydrocarbon. Journal of high resolution chromatography, 1994,
24. Zhao DY, Yang MK. Separation and determination of curcuminoids in Curcuma longa
L. and its preparation by HPLC. Yao hsueh hsueh pao, 1986, 21:382–385.
25. Bruneton J. Pharmacognosy, phytochemistry, medicinal plants. Paris, Lavoisier, 1995.
26. German Commission E Monograph, Curcumae longae rhizoma. Bundesanzeiger,
1985, 223:30 November.
27. Thamlikitkul V et al. Randomized double blind study of Curcuma domestica Val. for
dyspepsia. Journal of the Medical Association of Thailand, 1989, 72:613–620.
28. Intanonta A et al. Treatment of abdominal pain with Curcuma longa L. (Report submitted
to Primary Health Care Office, Ministry of Public Health, Thailand, 1986.)
29. Prucksunand C et al. Effect of the long turmeric (Curcuma longa L.) on healing peptic
ulcer: A preliminary report of 10 case studies. Thai journal of pharmacology, 1986,
30. Masuda T et al. Anti-oxidative and anti-inflammatory curcumin-related phenolics
from rhizomes of Curcuma domestica. Phytochemistry, 1993, 32:1557–1560.
31. Arora RB et al. Anti-inflammatory studies on Curcuma longa (turmeric). Indian journal
of medical research, 1971, 59:1289–1295.
32. Yegnanarayan R, Saraf AP, Balwani JH. Comparison of antiinflammatory activity
of various extracts of Curcuma longa (Linn). Indian journal of medical research, 1976,
33. Permpiphat U et al. Pharmacological study of Curcuma longa. In: Proceedings of the
Symposium of the Department of Medical Science, Mahidol University, Bangkok, Thailand,
Dec 3–4, 1990.
34. Gupta SS, Chandra D, Mishra N. Anti-inflammatory and antihyaluronidase activity
of volatile oil of Curcuma longa (Haldi). Indian journal of physiology and pharmacology,
1972, 16:254.
35. Chandra D, Gupta SS. Anti-inflammatory and antiarthritic activity of volatile oil of
Curcuma longa. Indian journal of medical research, 1972, 60:138–142.
36. Tripathi RM, Gupta SS, Chandra D. Anti-trypsin and antihyaluronidase activity
of volatile oil of Curcuma longa (Haldi). Indian journal of pharmacology, 1973, 5:260–
37. Ghatak N, Basu N. Sodium curcuminate as an effective antiinflammatory agent.
Indian journal of experimental biology, 1972, 10:235–236.
38. Srimal RC, Dhawan BN. Pharmacology of diferuloyl methane (curcumin), a nonsteroidal
anti-inflammatory agent. Journal of pharmacy and pharmacology, 1973,
39. Mukhopadhyay A et al. Antiinflammatory and irritant activities of curcumin analogs
in rats. Agents and actions, 1982, 12:508–515.
40. Rao TS, Basu N, Siddiqui HH. Anti-inflammatory activity of curcumin analogs.
Indian journal of medical research, 1982, 75:574–578.
41. Ammon HP, Wahl MA. Pharmacology of Curcuma longa. Planta medica, 1991, 57:1–
42. Kunchandy E, Rao MN. Oxygen radical scavenging activity of curcumin. International
journal of pharmacognosy, 1990, 58:237–240.
43. Kinoshita G, Nakamura F, Maruyama T. Immunological studies on polysaccharide
fractions from crude drugs. Shoyakugaku zasshi, 1986, 40:325–332.
44. Sakai K et al. Effects of extracts of Zingiberaceae herbs on gastric secretion in rabbits.
Chemical and pharmaceutical bulletin, 1989, 37:215–217.
45. Muderji B, Zaidi SH, Singh GB. Spices and gastric function. Part I. Effect of Curcuma
longa on the gastric secretion in rabbits. Journal of scientific and industrial research, 1981,
46. Rafatullah S et al. Evaluation of turmeric (Curcuma longa) for gastric and duodenal
antiulcer activity in rats. Journal of ethnopharmacology, 1990, 29:25–34.
47. Bhatia A, Singh GB, Khanna NM. Effect of curcumin, its alkali salts and Curcuma
longa oil on histamine-induced gastric ulceration. Indian journal of experimental biology,
1964, 2:158–160.
48. Sinha M et al. Study of the mechanism of action of curcumin: an antiulcer agent.
Indian journal of pharmacy, 1975, 7:98–99.
49. Prasad DN et al. Studies on ulcerogenic activity of curcumin. Indian journal of physiology
and pharmacology, 1976, 20:92–93.
50. Gupta B et al. Mechanisms of curcumin induced gastric ulcers in rats. Indian journal
of medical research, 1980, 71:806–814.
51. Srimal RC, Dhawan BN. In: Arora BA, ed. Development of Unani drugs from herbal
sources and the role of elements in their mechanism of action. New Delhi, Hamdard
National Foundation Monograph, 1985.
52. Deodhar SD, Sethi R, Srimal RC. Preliminary study on anti-rheumatic activity of
curcumin (diferuloyl methane). Indian journal of medical research, 1980, 71:632–634.
53. Satoskar RR, Shah Shenoy SG. Evaluation of antiinflammatory property of curcumin
(diferuloyl methane) in patient with postoperative inflammation. International journal
of clinical pharmacology, therapy and toxicology, 1986, 24:651–654.
54. Rockwell P, Raw I. A mutagenic screening of various herbs, spices and food additives.
Nutrition and cancer, 1979, 1:10–15.
55. Yamamoto H, Mizutani T, Nomura H. Studies on the mutagenicity of crude drug
extracts. I. Yakugaku zasshi, 1982, 102:596–601.
56. Nagabhushan M, Bhide SV. Nonmutagenicity of curcumin and its antimutagenic
action versus chili and capsaicin. Nutrition and cancer, 1986, 8:201–210.
57. Garg SK. Effect of Curcuma longa (rhizomes) on fertility in experimental animals.
Planta medica, 1974, 26:225–227.
58. Vijayalaxmi. Genetic effects of tumeric and curcumin in mice and rats. Mutation
research, 1980, 79:125–132.
59. Farnsworth NF, Bunyapraphatsara N, eds. Thai medicinal plants, recommended for a
primary health care system. Bangkok, Prachachon, 1992.
60. Seetharam KA, Pasricha JS. Condiments and contact dermatitis of the finger-tips.
Indian journal of dermatology, venereology and leprology, 1987, 53:325–328.